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Recently it has been shown experimentally by the authors that a highly twisted thin nematic
cell at low temperatures can separate into a smectic A region in the middle of the cell
surrounded by twisted nematic layers at the boundaries. In this case the twist is expelled into
the nematic layers and the nematic–smectic A transition temperature is strongly depressed.
We present a thermodynamic theory of such a phase transition in a twisted nematic cell,
taking into account that the smectic A slab inside the nematic cell can be stable only if the
decrease of free energy in the smectic region overcomes the increase in distortion energy of the
twist deformation in the nematic layers plus the energy of the nematic–smectic A interface. In
such a system the equilibrium thickness of the smectic A slab corresponds to the minimum of
the total free energy of the whole cell, which includes all the bulk and surface contributions.
Existing experimental data are at least qualitatively explained by the results of the present
theory. This opens a unique possibility to study the properties of the nematic–smectic
interface which is perpendicular to the smectic layers.

1. Introduction

Over the last decade the properties of liquid crystals

in confined geometries have attracted much attention,

and a significant amount of largely experimental work

has been undertaken in this area. From the practical

point of view it may be important to investigate the

effect of cell thickness on the parameters of a liquid

crystal material in a thin cell. In particular, a significant

decrease in the cell thickness may induce a transition
into a lower symmetry phase, as happens, for example,

in small pores of various geometries [1]. This is

generally related to the particularly strong influence

of surfaces which may either suppress or promote

different types of molecular ordering. For example, in

free standing films the free surfaces promote smectic A

(SmA) or smectic C phases [2–4], while in small pores

the surface usually favours the nematic (N) phase [1].

Recently a N–SmA phase separation has been observed

experimentally [5] in a slowly cooled thin twisted

nematic cell. Surprisingly, with decreasing temperature

the twisted nematic cell does not form a kind of twist

grain boundary phase (at least for the material studied)

but instead separates into smectic A and nematic

regions. In this case the twist of the director is expelled

from the central smectic A layer into the boundary

nematic regions. The director profile across the cell

(and thus the distribution of the twist) has been studied

using the half-leaky guided mode technique [6, 7]. It has

been found that the twist angle is constant inside the

smectic A layer, which is located approximately in the

middle of the cell. The twist is concentrated in nematic

regions where the azimuthal angle w(z) depends linearly

on z (where the z axis is normal to the surfaces). For

larger values of the cell thickness there exist several

smectic A layers separated by twisted nematic regions

(see figure 2 of ref. [6]). It should be noted that these

experimental results open the unique possibility to

study the flat N–SmA interface. There exists a possi-

bility also to study the N–SmA phase transition in

very thin layers with the thickness being controlled by

temperature.

One notes also that the thin smectic layer, sus-

pended in the twisted nematic, is confined by two

N–SmA interfaces which are perpendicular to the

smectic layers. Thus one may expect that the properties

of such a smectic layer should be different from those

of free-standing smectic films in which the layers
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are parallel to the surfaces. The dependence of the

N–SmA phase transition on the cell thickness in

twisted cells may also be qualitatively different from

that observed in thin homogeneous liquid crystal cells

[8, 9].

Phase transitions in twisted liquid crystal cells are

also interesting from an applications point of view

because twisted nematic cells are the key elements

of the fast and most widespread electro-optic display

devices. At present the properties of such nematic cells

are well understood but little is known about the

behaviour of such systems below the N–Sm phase

transition. The formation of a smectic layer inside the

twisted nematic cell has been described briefly theore-

tically in ref. [6]. In this paper we present a more

general thermodynamical theory of the N–SmA phase

separation in twisted cells which takes into considera-

tion system having both second and first order N–SmA

phase transitions in the bulk. The theory takes into

account that the formation of a thin smectic layer

inside the twisted nematic cell (on decreasing tempera-

ture) is possible only if the decrease of free energy

inside the layer overcomes the increase in distortion free

energy in the narrowing nematic regions. The increase

of the distortion energy density in the nematic layers

is determined by the increasing twist deformation. The

equilibrium thickness of the ‘floating’ smectic A layer

corresponds to the minimum of the total free energy of

the cell, which includes the extra free energy of the

smectic layer, the distortion free energy of the nematic

regions and the free energy of the N–SmA interface.

The latter energy is positive and accounts for a

depression of the N–SmA transition temperature in

twisted thin cells.

The paper is arranged as follows. In § 2.1 the wave

number of the twist deformation in nematic layers is

expressed in terms of the nematic layer thickness, the

twist elastic constant and the anchoring energy at the

nematic–substrate interface. In § 2.2 the N–SmA phase

transition in a thin layer is considered, using a simple

model which enables one to take into account the

energy of the nematic–smectic interface. In § 2.3 the

total free energy of the twisted nematic cell with a

smectic A slab inside is considered in detail. The

transition temperature and the critical smectic A slab

thickness at the transition are then determined sepa-

rately for the cases when the N–SmA transition in the

bulk is either second (§ 2.4) or first (§ 2.5) order in

nature. The temperature dependence of the smectic slab

thickness below the transition is also presented. Finally

in § 3 we present our conclusions.

2. The nematic–smectic A transition in a highly

twisted cell

2.1. Wave number of the twisted cell

Let us consider a twisted cell composed of a central

smectic A layer of thickness dA and two surface nematic

layers of total thickness dN. Here dAzdN~d where d

is the thickness of the cell. The twist of the director

in such a cell is determined by the experimentally

controlled angle w12 between the two easy axes at the

two outer surfaces. In such a cell there exists only

twist orientational deformation and the distortion

free energy density in the bulk can be expressed as

Fd~K22 n:curl nð Þ2. The total distortion free energy of

a nematic layer also includes the anchoring energy of

the director at the two surfaces. Here we assume for

simplicity that the azimuthal anchoring energy at the

nematic–substrate interface is described by a simple

Rapini-type expression: WS(w)~WS cos2 (w2w0), where

w2w0~dw is a deviation of the director twist angle

at the surface from the direction of the easy axis.

Secondly, we assume that the anchoring at the N–SmA

interface is much stronger than that at the nematic–

substrate. This assumption is in fact confirmed

experimentally. Indeed, if the anchoring energy at the

N–SmA interface is finite, the director would deviate

from its equilibrium position due to the action of the

torque from the bulk which is determined by the twist

deformation. Moreover, the deviations of the azimuthal

angles at the top and bottom interfaces, dw1 and dw2,

would possess opposite signs and therefore there should

be a noticeable angle dw~dw1zdw2 between the directors

at the two surfaces of the central smectic A layer. This

conclusion is in contradiction with experiment because

the twist angle w(z) is the same at the top and bottom

surfaces of all smectic A layers which have been observed

in our experiment [6].

Now the total distortion free energy of the two

nematic layers can be written as

FdN~

ðdN1

0

dzK22 n:curl nð Þ2
z

ðd
d{dN2

dzK22 n:curlnð Þ2

zWS cos2 w1{w0
1

� �
zWS cos2 w2{w0

2

� �
ð1Þ

where w1~w(z~0) and w2~w(z~d) are the actual

azimuthal angles of the director at the two surfaces of

the cell (i.e. at z~0 and z~d, respectively), and the

angles w0
1 and w0

2 specify the orientation of the two easy

axes.

Everywhere in the bulk of the nematic regions the

minimum of the distortion free energy corresponds to

the constant gradient of the azimuthal angle dw/dz~q

where q is the wave vector of the helical structure. The

M. A. Osipov et al.824
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wave vector q can be expressed as

q~
Dw0

12{dw1{dw2

dN
ð2Þ

where Dw0
12~w0

1{w0
2.

Assuming that the two surfaces of the twisted cell are

equivalent (i.e. they have been treated in the same way)

one obtains dw1~dw2~dw.

The deviation dw can be determined from the

boundary condition at the surface:

K22
dw

dz
~K22q~WS sin 2dw: ð3Þ

Experimentally the deviation dw is rather small,

dwv10‡ [6] and therefore the sin 2dw term in equa-

tion (3) can be approximated by 2dw. Using this appro-

ximation one obtains from equation (2) and (3) the

explicit expressions for the deviation dw and the wave

number q:

dw~
Dw0

12

2 1zWSdN

K22

� � : ð4Þ

q~
Dw0

12

dN 1z K22

WSdN

� � : ð5Þ

Taking into account also that dw%Dw0
12 (experimen-

tally Dw0
12*p=2 [6]) one obtains a simplified estimate

for the wave number q

q&
Dw0

12

dN
: ð6Þ

One can also see from equation (5) that the esti-

mate (6) is valid when the dimensionless parameter

D~K22=WSd% 1. Indeed, the characteristic length

lw~K22/WS, which is composed of the elastic constant

and the surface anchoring strength, is usually much

smaller than a typical cell thickness d. The parameter D

can be estimated using the director twist angle profile

presented in figure 1 of ref. [6]. One notes that the

actual difference between the azimuthal angles of the

director at the two interfaces w12w2 is approximately

53.5‡. Using the equation w12w2~w1222dw and sub-

stituting w12~85‡, one obtains dw y16‡. Substituting

these data into equation (4) and taking into account

that in figure 1 of ref. [6] dN=d&0:53, one obtains an

estimate of Dy0.3. Thus the parameter D is not too

small to be completely neglected. On the other hand,

this means that the azimuthal anchoring of the director

in the twisted cell is not very strong and one expects

substantial deviations of the director from the easy

axes at the surfaces. Such deviations have indeed been

observed experimentally [6].

2.2. Nematic–smectic A transition in a thin layer

Let us consider a thin slab of smectic A ‘floating’

in the twisted nematic with the smectic layers being

perpendicular to the nematic–smectic interface. It is

reasonable to assume that the amplitude of the smectic

density wave vanishes continuously at the N–SmA

interface which does not favour smectic ordering. Then

the free energy of the smectic A slab (per unit area of

the interface) can be expanded in powers of the smectic

order parameter y in the standard way:

FA~FNz

ðdA

0

dz
1

2
a(T{T�)y2

�

z
1

4
by4z

1

6
cy6zg

dy

dz

� �2
#

with the boundary conditions at the two N–A interfaces

y z~0ð Þ~y z~dAð Þ~0 where dA is the thickness of the

smectic A slab. The N–SmA transition in the bulk

is second order if the coefficient b in equation (7) is

positive. In this case the bulk N–SmA transition

temperature is equal to T*.

In a smectic A slab of macroscopic thickness the

order parameter y is approximately constant in the

Figure 1. Temperature variation of the total thickness of the
two twisted nematic layers in the phase separated twisted
cell in the case of a second order N–SmA transition in
the bulk (solid curve). Stable solutions correspond to the
lower branch of the curve. The dashed line is a boundary
of the region of global stability of the phase separated
cell. Everywhere to the right of the dashed curve the
twisted cell, with an untwisted smectic A region inside,
possesses a lower free energy then the twisted nematic
cell. The transition temperature T tw

c and critical thickness
of the nematic layer are shown by arrows.

(7)
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middle of the slab and vanishes near z~0 and z~d.

The thickness of the boundary layer, where the order

parameter y is strongly positionally dependent, is deter-

mined by the coherence length jc~ g=a T�{T
� �� 	1=2

which diverges as TpT*. In the case of a second order

N–SmA transition, the minimum of the free energy (7)

corresponds approximately to the following order para-

meter profiles near the interfaces [5]:

y zð Þ&y0 tanh z=jcð Þ ð8Þ
for z%dA and

y zð Þ&y0 tanh d{zð Þ=jc½ � ð9Þ
for dA{zj j%d, where it has been assumed that dA&j

and where y0 is the smectic order parameter in the

central part of the slab.

On the other hand, if the thickness of the smectic slab

is much larger than that of the boundary layer, the total

free energy of the slab FA can always be represented as

a sum of bulk and surface terms:

FA~Fb
AzsNA: ð10Þ

Here the bulk free energy Fb
A can be expanded in

powers of the homogeneous smectic order parameter y0

(according to equation (7) but without gradient terms).

In the general case, the structure of the surface free

energy sNA is not known. However, close to the

transition point it is possible also to expand it in powers

of the order parameter y0 and to retain the first

quadratic term, sNA&s0
NAy

2
0. The free energy of the

N–SmA interface can be estimated with the help

of equation (7). In the case when dA&j, the surface

free energy is determined by extra positive energy

associated with the gradients of the order parameter

close to the interface. Thus the surface energy can be

estimated as

sNA*2

ðj
0

dz g
dy

dz

� �2

: ð11Þ

In the surface regions the average order parameter

gradient can be estimated as dy=dz&y0=jc. Substitut-

ing this estimate into equation (11) one obtains

sNA*
2y2

0g

j
: ð12Þ

In the vicinity of T~T* the coherence length j and

the surface free energy sNA are strongly temperature

dependent. For example, for the liquid crystal material

8CB at temperatures close to the transition point, the

parallel correlation length j&t{nE where t~(T2T*)/T*

and nE~0:67 [10]. At the same time, experimental data

indicate [6] that in the highly twisted cell the smectic A

region is formed at temperatures well below the bulk

N–SmA transition temperature. Thus in that region the

coherence length j is small and the surface free energy

is weakly temperature dependent.

Now the total free energy of the smectic A slab, as

shown in equation (10), can be written approximately as

F=dA&
1

2
a T{T�� �

y2
0z

1

4
by4

0z
1

6
cy6

0z
s0

NA

dA
y2

0 ð13Þ

where s0
NA*2g=jc.

One can see readily from equation (13) that in the

slab of thickness dA the nematic phase is becoming

unstable at a temperature ~TT� which is related to the

bulk instability temperature T* by the following

equation:

1

2
a ~TT�{T�� �

z
s0

NA

dA
~0: ð14Þ

In the case of a second order N–SmA transition the

bulk transition temperature Tb
NA~T�. Then the N–

SmA transition in a thin slab of thickness dA occurs at

~TTNA~Tb
NA{

2s0
NA

dAa
ð15Þ

One notes that the shift of the transition temperature

is inversely proportional to the slab thickness dA, as

expected, and is directly proportional to the positive

energy of the N–SmA interface. If the N–SmA transi-

tion is first order, the transition temperature TNA is

related linearly to T* and therefore the relation (15)

remains valid.

It should be noted that equation (15) expresses the

N–SmA transition temperature in terms of the smectic

slab thickness dA which thus far is not known. In a

twisted nematic cell the smectic A region of some

thickness dA appears self-consistently at a transition

temperature ~TTNA which is related to dA by equa-

tion (15). At the same time, the critical thickness of

the smectic slab at the transition point corresponds to

the minimum of the total free energy of the cell that

also includes the distortion energy of the nematic

layers. This free energy is considered in the following

section.

2.3. Critical thickness of the smectic A region

The equilibrium thickness of the smectic A slab

inside the twisted nematic cell is generally determined

by minimization of the total free energy of the whole

cell. It is convenient to calculate this free energy with

respect to that of the background untwisted nematic

state in the cell. Then the total free energy includes the

distortion free energy of the nematic regions, the energy

of the N–SmA interface and the difference between the

free energy densities of the nematic and smectic A

phases inside the smectic A region. One notes that the

growth of the smectic A region has a two-fold effect.

M. A. Osipov et al.826
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On one hand, the free energy of the smectic region is

decreasing because at temperatures below Tb
NA the free

energy density of the smectic A state is lower that that

of the nematic state. On the other hand, the distortion

free energy of the nematic regions is increasing due to

the growing twist deformation. Thus the equilibrium

thickness of the smectic slab is determined by a balance

between the positive distortion energy of the nematic

layers and the negative free energy of the smectic A

region.

The total free energy of the twisted nematic cell with

the smectic A region inside can be written as

DFNzA~FNzA{F0
N~dA

1

2
a T{T�� �

y2z
1

4
by4z

1

6
cy6

� 


z2sNAz
1

2
dNKq

2{2WS cos2 dw ð16Þ

where F 0
N is the free energy density of the homogeneous

(untwisted) nematic phase, the angle dw specifies a

deviation of the director from the easy axis at the

surfaces of the cell, dA. is the thickness of the smectic A

slab and dN~d2dA is the total thickness of the two

nematic layers at the boundaries. In equation (16) the

wave number q is given by equation (5), the angle dw is

given by equation (4) and an estimate for the energy of

the N–SmA interface sNA is presented in the previous

section. As discussed in section 2.1, the deviation dw%1

and therefore the surface anchoring energy Ws cos2 dw
in equation (16) can be expanded in powers of dw, i.e.

Ws cos2 dw&WS 1{ dwð Þ2
h i

.

Introducing the dimensionless variable y~dN/d and

substituting equations (4) and (5) into (16), the free

energy (11) can be rewritten as

DFNzA=d~ 1{yð Þ 1

2
a T{T�� �

y2
0z

1

4
by4

0z
1

6
y6

0

� 


zGy2
0z

~KK

Dzy
{ ~WW

where

~KK~
K22w

2
12

2d2
ð18Þ

D~
K22

WSd
ð19Þ

and G~s0
NA=d.

The free energy DFNzA is to be compared with the

distortion free energy of the homogeneously twisted

nematic cell F tw
N which is expressed as

F tw
N =d~

~KK

Dz1
: ð20Þ

The N–SmA transition in the twisted cell occurs when

DFNzA~F tw
N . This condition can be rewritten as

DFNzA

d
{

F tw
N

d
~

1{yð Þ 1

2
a T{T�� �

y2
0z

1

4
by4

0z
1

6
y6

0

� 


zGy2
0z

~KK 1{yð Þ
Dzyð Þ Dz1ð Þ~0: ð21Þ

In equation (21) the first term is always negative below

the bulk N–SmA transition temperature because locally

the liquid crystal material prefers to be in the smectic

A phase. This contribution decreases with decreasing

dimensionless thickness of the nematic region y. This

tendency, is counterbalanced however, by the two other

terms in equation (21) which are positive. The second

(surface) term does not explicitly depend on y and the

third (elastic) contribution increases with decreasing y.

The smectic order parameter y0 and the equilibrium

thickness of the nematic layer y can be determined by

minimization of the free energy (17). One obtains

LDFNzA

Ly
~{

1

2
a T{T�� �

y2
0

{
1

4
by4

0{
1

6
y6

0{
~KK

Dzyð Þ2
~0

and

LDFNzA

Ly0

~ 1{yð Þ a T{T�ð Þy0zby3
0zy5

0

� 	
z2Gy0~0:

2.4. Materials with a second order N–SmA transition

in the bulk

Now let us consider the case of a second order

N–SmA phase transition in the bulk. In this case bw0

and one can neglect the sixth-order term in y in equa-

tions (22) and (23). In this case the order parameter y0

is expressed as

y2
0~

a

b
~TT yð Þ{T

� 	
ð24Þ

where

~TT yð Þ~T�{ 2G

a 1{yð Þ : ð25Þ

The dimensionless thickness y of the two nematic layers

is given by equation (22), which can be rewritten as

1

2
a T�{T
� �

y2
0{

1

4
by4

0~
~KK22

Dzyð Þ2
: ð26Þ

Substituting equation (25) into (26) one obtains the final

(17)

(22)

(23)

N–SmA phase separation in TN cells 827
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equation for y

k

Dzyð Þ2
~ T�{T

� �2
{

G2

1{yð Þ2
ð27Þ

where k~4b~KK=a2, and G~2sNA/ad.

The solution of equation (27) for D~0.3 (see § 2.1),

k~25 and G2~0.02 is shown in figure 1. One notes that

for each temperature T there exist two solutions for

y~dN/d, and above the global instability temperature

T~T** there exists no solution at all. The upper branch

of the curve in figure 2 (i.e. for y close to 1) corresponds

to unstable solutions. It is interesting to note that at

temperatures slightly below T** the thickness of the

smectic slab dA~d(12y) is very strongly temperature

dependent. In this region the temperature variation

of dA is qualitatively similar to the one observed

experimentally [6]. Indeed, it has been found [6] that the

thickness of the smectic A slab increases by approxi-

mately a factor of two within a narrow temperature

interval of less a two degrees. One finds the same type

of temperature variation in figure 1 directly below T**.

It should be noted also that the part of the curve in

figure 1 that corresponds to very low thickness of the

nematic layer (i.e. for y<0), should not be taken too

seriously. In particular, the solution y~0 corresponds

to a limiting case when the nematic layers at the

boundaries vanish completely. In this case the cell is

filled with a homogeneous untwisted smectic A phase

and the initial twist disappears. This means that the

deviation of the director from the easy axis at the

surface dw is equal to half the initial twist angle w12yp/2.

Such deviations of the director from the easy axis are

too strong and the corresponding anchoring energy

cannot be described by a simple Rapini-like form used

in the present model. One may assume that in this case

the non-linear effects must be very strong and the

elastic energy, concentrated at the surfaces, will be

too large. As a result the cell may undergo a transition

into some other phase. In our experiments we have

never observed yv0.4. When the temperature is further

decreased, the system is found to undergo a transition

into another state with unknown structure.

In general the temperature variation of y resembles

that of the order parameter for a typical first order

phase transition. The variation of the thickness of the

nematic region, presented in figure 1, enables one to

conclude that the N–SmA transition in a highly twisted

cell is effectively first order in nature, although the

N–SmA transition in the bulk may be second order. At

the transition the twisted nematic cell spontaneously

separates into a smectic slab (or several slabs) of finite

thickness surrounded by twisted nematic layers. Such a

transition occurs well below the bulk N–SmA transition

temperature and therefore the smectic ordering inside

the smectic A slab is already sufficiently high. As dis-

cussed above, at the transition the total free energy of

the twisted cell with a smectic A region inside is equal

to the distortion free energy of the homogeneously

twisted nematic cell. This condition is represented by

equation (21) which determines the N–SmA transition

temperature in the twisted cell T tw
c .

Substituting equation (24) into (21) and neglecting

the sixth order term one obtains the following equation

for the transition temperature T tw
c :

~KK

Dz1ð Þ Dzycð Þ~
a2 T�{T tw

c { G
1{yc

� �2

4b
ð28Þ

which yields

T�{T tw
c ~

k

Dz1ð Þ Dzycð Þ

� 
1
2

z
G

1{yc
: ð29Þ

Here yc is the dimensionless thickness of the nematic

layers at the transition temperature T tw
c . One notes that

equation (29) establishes a relationship between the

transition temperature and the thickness of the nematic

layers at the transition. At the same time the tem-

perature variation of the dimensionless thickness y is

given by equation (27). Thus the transition temperature

T tw
c and the critical thickness yc can be found by

solving the system of equations (27) and (29).

The condition FNzA T , yð ÞvF tw
N Tð Þ determines the

area in the T–(2y) phase diagram where the free energy

Figure 2. Temperature variation of the thickness of two
twisted nematic layers in the phase separated cell in the
case of a first order N–SmA transition in the bulk (solid
curve). The dashed line is a boundary of the region of
global stability of the phase separated twisted cell, with
an untwisted smectic A region inside. The transition
temperature T tw

c and the critical thickness of the nematic
layer occur at the turning point of the solid curve and are
shown by arrows.
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of the twisted cell with a smectic A slab is lower than

that of the homogeneously twisted nematic cell.

The boundary between the two regions, which

corresponds to FNzA T , yð Þ~F tw
N Tð Þ, is shown in

figure 2 as a dashed curve. This curve has been plotted

with the same parameters D, k and G as the solid

curve which presents the temperature variation of the

equilibrium thickness of the nematic layer. Every-

where to the right of the dashed curve, the cell with

the smectic A region is stable with respect to the

homogeneously twisted cell. The transition temperature

T tw
c and the critical thickness yc correspond to the

coordinates of the intersection point of the dashed and

solid curves. The values of T tw
c and yc are shown by

arrows in figure 1, from which one can also see that

stable solutions of y(T) are represented by the lower

branch of the solid curve for TvT tw
c . The correspond-

ing solutions in the interval between the transition

temperature T tw
c and the instability temperature T**

(turning point on the solid curve) are metastable.

2.5. Materials with the first order N–SmA transition in

the bulk

In the previous section we considered the case when

the N–SmA transition in the bulk is second order. If

the transition is weakly first order, the discontinuity of

the smectic order parameter at the transition point is

small and the equations presented above remain to be

qualitatively valid. However, if the transition in the

bulk is strongly first order, the temperature variation of

the smectic order parameter is completely different and

the consideration presented above has to be modified.

One notes that, in the case of a strong first order phase

transition, the temperature variation of the order para-

meter is generally rather weak. Taking into account

also that the N–SmA transition in the twisted cell

occurs at temperatures well below the bulk transition

temperature, one may neglect the variation of the

smectic order parameter and assume that y~const in

some temperature interval around T~T tw
c . In this

approximation equation (22) for the equilibrium dimen-

sionless thickness of the nematic layer can be rewritten

as

~kk

Dzyð Þ2
~T0{T{

G

1{y
ð30Þ

where ~kk~2~KK=ay2
0 and T0~T�z b=2að Þy2

0z c=3að Þy4
0.

The solution of equation (30) for D~0.3, G~0.2 and

~kk~4 is presented in figure 2 (solid curve). One notes

that the temperature variation of the dimensionless

thickness of the nematic layer y is qualitatively similar

to the one obtained for the case of a second order

N–SmA transition in the bulk. The transition point in

the twisted cell is determined by the general equa-

tion (21) which can now be written as

T0{T~
k

Dz1ð Þ Dzyð Þz
G

1{y
: ð31Þ

Similar to the case of the second order transition in

the bulk, the dashed curve determines the region on the

T–(2y) phase diagram (to the right from the curve)

where the free energy of the cell with a smectic slab

inside is lower than that of the homogeneously twisted

cell at the same temperature. One notes that, in the case

of a first order transition in the bulk, the whole branch

of stable solutions y(T) (i.e. the lower branch of the

solid curve in figure 2) is located in the region in which

the nematic slab inside the twisted cell is globally stable.

Thus the actual transition in the twisted nematic cell

occurs at a temperature T tw
c which coincides with the

global instability temperature specified by the turning

point on the solid curve of solutions y(T). This transi-

tion temperature, together with the critical thickness of

the nematic layer at the transition point, is indicated by

an arrow in figure 2.

3. Discussion

In this paper we have considered the N–SmA phase

transition in a twisted thin nematic cell. It has been

shown that on decreasing temperature such a cell may

separate into a smectic A region in the middle and two

nematic layers at the boundaries. The twist of the

director is expelled into the nematic regions. The thick-

ness of the smectic A slab is temperature dependent

and is determined by a delicate balance between the

negative free energy of the smectic region and the

positive distortion energy of the nematic layers plus

the energy of the N–SmA interface. The equilibrium

thickness is then determined by a minimization of the

total free energy of the whole cell, and the global

stability of the smectic A slab is determined by a

condition that this total free energy of the cell is less

than that of the homogeneously twisted cell at the same

temperature. It is interesting to note that the N–SmA

transition in such a cell is always first order, although

the corresponding transition in the bulk may be second

order. At the transition point a smectic A slab of finite

thickness is spontaneously formed. This is related to

the fact that the smectic A free energy density must be

sufficiently low (with respect to that of the nematic

phase) to overcome the positive energy of the N–SmA

interface and the positive increase of the distortion

energy in the nematic layers. As a result, the N–SmA

transition temperature is depressed with respect to its

value in the bulk. In such a system the temperature

variation of the thickness of the smectic A slab (see

figures 1 and 2) is similar to that of the order parameter
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at a typical first order phase transition. In fact, the

smectic slab thickness here plays the role of an addi-

tional order parameter of the smectic A region which

possesses a variable size. Then both smectic order

parameters and the slab thickness are determined by a
minimization of the same total free energy of the cell.

It has been found experimentally [6] that in some

cases several smectic A slabs are formed in the twisted

nematic cell. Such smectic slabs are separated by

twisted nematic layers. This may be explained by a

nucleation process. One may assume that several

smectic regions are formed spontaneously and begin

to grow in different parts of the twisted nematic cell.
Such smectic regions cannot coalesce easily because

they are separated by a high potential barrier deter-

mined by a positive distortion energy of the twisted

nematic gap. If two smectic slabs approach each other,

a decrease of the nematic layer thickness results in a

strong repulsion between smectic slabs because the

twist is confined within the nematic layer.

It should be noted that the formation of thin smectic
A slabs inside a twisted nematic cell allows the unique

opportunity to study the N–SmA phase transition and

the N–Sm interface in very thin (less then 1000 Å) flat

films. The thickness of the film can be controlled both

by temperature and by the initial twist in the nematic

cell. Smectic A layers in the twisted nematic cell

are formed at temperatures below the bulk N–SmA

transition temperature, and thus the nematic is under
cooled. In this temperature range one may expect that

smectic fluctuations will play an important role. Thus

the N–SmA phase transition in highly twisted cells

deserves further experimental investigation using other

techniques, including high resolution calorimetry and

X-ray scattering. One notes, however, that N–Sm phase

separation in a twisted cell can be expected only if the

surfaces promote the nematic phase. Slightly different

surfaces may promote smectic A ordering, and in this

case the whole cell may undergo a transition into the

smectic phase with the simultaneous formation of a

complex defect structure to accommodate the twist [11].
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